
Tenant Isolation Model
Last Modified on 20/01/2022 11:24 am AEDT

Overview
The ReadiNow platform is designed to support multiple tenants (clients) concurrently on the same platform. The

design ensures that it is impossible for any information of one tenant to be accessible in any way by users of another

tenant. This requirement has been a key factor in the design, architecture, and implementation of the ReadiNow

platform since its inception.

Every tenant database record includes a tenant identifier. The design of the ReadiNow platform means that only a

small number of code-paths can reach the database. Any calls to the database are made such that the query is always

constrained to the tenant of the current authenticated user. In a similar manner, various server caches used by the

ReadiNow platform isolate data by tenant, such that cached data is partitioned by tenant, and source code can only

access cache data for the tenant of the current user. Binary data is associated with tenants via cryptographically

secure hashes.

All requests to the ReadiNow platform to read or modify data include a security token for the current user. In this way,

every request is necessarily associated with a user and tenant. In conjunction, this means that it is not possible for any

authenticated user to interact with any database information for a tenant other than their own.

This design ensures that the following are achieved through a robust architecture design: 1. Isolation of tenant data

between tenants, accessible only to users of that tenant; 2. all data for a tenant can be identified; 3. where required, all

data for a tenant can be removed.

Detail

Database structure

The ReadiNow platform contains a relatively small number of database tables for holding customer data. These

include a table of Entities (records), Relationships, and field data tables. Each of these contain a TenantID column so

that each piece of data is associated with a tenant.

For example, the Relationship table contains columns:

TenantId Rel type ID From ID To ID Other column(s)

Database access

Many of the database queries performed by the ReadiNow platform are dynamically generated to match the

particular data or reporting requirements of each customer and application.

There are two engines for generating dynamic SQL queries: a report query generation engine for generating tabular

reports; a graph-based query generation engine for loading more general entity relationship data. The latter is used

for loading much of the user data and application metadata data for the platform. In both cases, the query generation

engines explicitly enforce a tenant filter on each table join such that it cannot be circumvented by the dynamic



queries. (Further, no portion of the dynamic query is ever derived directly from unfiltered string data, to prevent any

possibility of SQL injection attacks).

The ReadiNow platform software also contains a relatively small number of other static queries that serve various

parts of the product. These also explicitly filter the tenant. Tenant filtering is always done in addition to any other

filtering clauses that may be present in the query.

In this way, the platform architecture ensures that database accesses are filtered to the tenant.

Identifying the Current Tenant

When a user logs into the ReadiNow platform, an authentication token is issued in the form of a per-session cookie.

This token is then returned to the server as part of every web request to retrieve or modify data.

An ASP web filter is used to ensure that every request is intercepted at the server to ensure that the request contains

a valid authentication token. This allows every request to be associated with a user and a tenant. This information is

stored on the current executing thread, so that all code paths have reliable direct access to the current user ID and

tenant ID. This tenant ID is what is applied in the database query filters described in the previous section. In this way,

only authorised users can make requests to read or update data; and the architecture scopes all queries to only apply

to data in their tenant.

Pipeline

As depicted, platform logic cannot reach the database without queries being constrained to the tenant for the current

user.

Storage of binary data

Binary data such as application icons, documents, and generated report templates, are stored separately to the main

database. Data deduplication is implemented by taking a cryptographically secure (SHA256) hash of the binary data

and indexing data by the hash. This means that for all intents and purposes the hash securely uniquely identifies the



document. The hash is then stored in the database, along with the tenant ID and filtered in the same manner as other

database data.

In this way, each binary is securely protected by tenant filtering via the hash. However, necessarily to achieve data de-

duplication, one binary may be associated with multiple tenants.

It is therefore possible to identify all binaries associated with a tenant; and to remove all binaries uniquely owned by a

tenant.

Cache Tenant Isolation

The ReadiNow platform server makes use of a number of caches – both in memory, and in separate

processes/servers. A shared code-path is used by various systems for establishing and accessing caches. This code

path includes a tenant-isolation layer that ensures that cached data is associated with a particular layer. This is

typically achieved either by isolating data into sub caches with one sub-cache per tenant; or by augmenting the cache

key to include the tenant. By design this is done by the common cache code used by all caches, rather than particular

specific caches to maximise protection. Per tenant cache isolation also allows for caches to be refreshed on a per-

tenant basis.

As with the query filtering, cache accesses use the tenant ID for the current thread. In this way a user requesting to

read or modify data can only reach cache entries for their tenant.


