
Dates, Times and Time Zones
Last Modified on 07/06/2019 12:50 am AEST

Date and Time Data Types

ReadiNow supports three related data types:

Date only

Time only

Date and Time

The date-time data type is time zone aware. The date-only and time-only data types are

not time zone aware.

Date only type

A date-only field holds a year, month and day. Date only fields are not time zone aware,

which is to say that if a record has a particular date stored in a date-only field, then all

ReadiNow users will see the same year, month and day for that record, irrespective of

what time zone was active when the record was created, or what time zone they are in

when viewing the record.

Calculations and sub calculations can also return date-only values, and they are similarly

(mostly) time zone unaware. For example, a calculation may refer to a date-only field on a

record.

A constant date-only value can be added to a calculation using the ISO format: #yyyy-

mm-dd#. For example:

[Review date] > #2015-10-21#

The one manner in which date-only data type is aware is when using the getdate()

function. This will return a today's date, according to the current user's time zone, as

date-only value.

getdate()

Time only type

A time-only field works in a similar manner, holding a hour, minute, and second. Note that

the second value is recorded, even if it is often not visibly presented. This can cause some

confusion with time calculations that perform 'equals' comparisons.

Time only fields and calculations are similarly not time zone aware, and all users will see

the same hour, minute and second, regardless of their local time zone. (Time zone

adjustments are not possible without a date in order to determine daylight savings

offsets).

A constant time-only value can be added to a calculation using the ISO format: #hh:mm#

or #hh:mm:ss#, where the hour is expressed in 24 hour time.

[Start time] < #17:15#

Time-only is similarly time-zone aware when the gettime() function is used. This function

will return the current time, according to the current user's time zone, as a time-only

value.

gettime()

Date time type

A date-time field represents a specific moment in history. It has the appearance of

holding a date and a time. But it is time-zone aware, and its value will always be presented

using the local time zone of each user. It does not, however, store a timezone in itself.

Time zones are discussed below.

A constant date-time value can be added to a calculation using the following formats, all

equivalently giving a result of 31st December 2019, 1:30pm and 59 seconds.

#2019-12-31T13:30:59# -- ISO format

#2019-12-31 13:30:59# -- 31st December 2019, 1:30:59pm

#2019-12-31 1:30 PM# -- 31st December 2019, 1:30:59pm

The getdatetime function always returns the current moment in time as a date-time

value, which is then always presented in the user's local time in the same manner as any

other date-time value.

getdatetime()

Time zones and the date-time type

When a date-time field value is entered into a record through a form, or some other

manner, the date and time numbers entered are understood to be in the local time zone

region of the current user. When the record is then later used on a form or report, the

values are then converted back to the user's local time zone region.

However, a different user viewing the same record from a different time-zone region will

see different values - the same moment in time, but represented according to their time-

zone region.

The general principle, however, is that any one user (operating within one time zone) will

always see a consistent view of date-time record data, throughout the year, in their own

local time zone.

Internally stored as UTC

The ReadiNow platform internally converts any date-time values entered to UTC (GMT)

date-times for storage and processing. When the record is then later used on a form or

report, the values are then converted back to the user's local time zone region.

Note that time-zone region, rather than time-zone offset, is used because different

regions have different historical timings for the start and end of daylight saving. When a

date-time value is being converted to local time, the date in that date-time value is used

to determine whether daylight time is used (not whether the present time is currently in

daylight saving). This similarly ensures a consistent view of the data year around.

In this manner:

a user who enters a date-time value into a record, will see the same date-time value

for that record throughout the platform. (assuming they do not change the time-

zone of their computer).

and will continue to see the same value presented throughout the year, even as

their local offset adjusts for daylight saving.

a different user who views the date-time record from a different time zone, will see

the same moment in time - but converted to their own time zone.

For example:

if a date-time value of 10am on 6/6/2019 is set on a record by a user in Sydney

(GMT+10)

then a user in California (GMT-7) viewing the same record will see a value of: 5pm

on 5/6/2019

six months later, the Sydney user will still see that record showing 10am on

6/6/2019.

Determining the time zone

All calculations are run in the context of a time zone.

Web Browsers

For calculations that are performed in the web user interface, the time-zone region

information provided by the user's operating system and browser is used to determine

the time-zone offsets.

Default Time Zone Region and Scheduled Workflows

For calculations that are performed in a workflow that is run on a schedule, or similarly

triggered by a background operation, the time zone region is based on the Time Zone

setting, located under Administration / Settings / General Settings.

Note that the general settings page shows an hours offset. However, it is the region, not

the present offset, that is recorded as the setting, for the reasons above.

Date and Time Calculations

General principles

The following general principles guide the treatment of time zones for date-time values

(but not date-only, nor time-only) in calculations:

1. whenever a date-time value gets created from individual parts, those parts are

understood to be in the local time zone.

2. whenever a date-time value gets dissolved into its parts, or the parts shown, those

parts will represent the local time zone.

3. whenever a function could be impacted by the time zone, that function is performed

in local time.

Examples

1. Principle 1 - the following are all understood to be 9:30am on 30th June 2019, in

local time:

#2019-06-30T09:30:00#

datetimefromparts(2019, 6, 30, 9, 30, 0)

convert(datetime, '2015-07-27 09:30:00')

2. Principle 2 examples:

1. hour(getdatetime()) returns the current hour as a number, according to local

time

2. 'The time is ' + getdatetime() creates a string that includes the current date

time, according to local time.

3. datename(month, getdatetime()) returns the name of the current month,

according to local time

3. Principle 3 example:

1. dateadd(month, 1, getdatetime()) the result of adding one month can be

slightly different depending on the time zone.

Impact of time zone on various date and time functions

getdate
returns the current date, according to the

local time zone, as a date-only value.

gettime
returns the current time, according to the

local time zone, as a time-only value.

getdatetime
returns the current moment, as a date-

time value.

year

gets the year number of a date-only or

date-time value (for the latter, according

to the local time zone)

month

gets the month number from 1 to 12 of a

date-only or date-time value (for the

latter, according to the local time zone)

day

gets the day number from 1 to 31 of a

date-only or date-time value (for the

latter, according to the local time zone)

hour
gets the hour number from 0 to 23 of a

time-only or date-time value (for the

latter, according to the local time zone)

minute

gets the minute number from 0 to 59 of a

time-only or date-time value (for the

latter, according to the local time zone)

second

gets the second number from 0 to 59 of a

time-only or date-time value (for the

latter, according to the local time zone)

quarter

gets the quarter number from 1 to 4 of a

date-only or date-time value (for the

latter, according to the local time zone)

dayofyear

gets the day of the year from 1 to 366 of a

date-only or date-time value (for the

latter, according to the local time zone)

week

gets the week number of the year from 1

to 53 of a date-only or date-time value

(for the latter, according to the local time

zone)

weekday

gets the day of the week as a number from

Sunday=1 to Saturday=7 of a date-only or

date-time value (for the latter, according

to the local time zone)

datefromparts

composes a date-only value from a year,

month, and day, number, without regard

to time-zone.

timefromparts

composes a time-only value from a hour,

minute, and second number, without

regard to time-zone.

datetimefromparts

composes a date-time value from year,

month, day, hour, minute, and second

numbers, interpreting those numbers

with regard to the current time zone.

dateadd

add (or subtracts) a specified number of

units to a date-only or date-time value.

The former is performed without regard

to time-zone. The latter is performed in

the context of the current time zone.

datediff

calculates the difference between two

date-only values, or two date-time values.

The former is performed without regard

to time-zone. The latter is performed in

the context of the current time zone.

datename

returns a part of a date-only or date-time

value as text (such as the month name).

The former is performed without regard

to time-zone. The latter is performed in

the context of the current time zone.

Impact of time zone on conversion functions

A date-time can be implicitly converted to:

a date-only

a time-only

text

In each case, the date-time is converted to local time, and the local components of the

date and/or time are used to make up the new value.

A date-only can be implicitly converted to:

a date-time - in which case, the date-time is constructed by taking midnight,

according to the local time zone, of the date-only value and using that as the date-

time value.

text - in which case the time zone takes has no effect.

A time-only can be implicitly converted to text, and similarly has no effect.

A text string can be explicitly converted to:

a date-time - in which case the text is processed as though it is representing a local

date-time.

a date-only - in which case, the numerical values of year, month, date are used

directly, irrespective of time zone

a date-only - in which case, the numerical values of hour, minute, second are used

directly, irrespective of time zone

