
Converting between data types
Last Modified on 01/06/2019 4:00 am AEST

Implicit and explicit conversion

A calculation or sub calculation with a particular result type will often need to be used in a

place that requires a different data type.

For example, a record field that contains a date, or number, may need to be combined with

other text in order to generate an email message. In this example, the date sub calculation

needs to first be converted to text.

There are two ways that conversion may occur between types.

Implicit conversion

For many data type conversions, the meaning of the data conversion is clear, and there will

be no loss of information. In such cases, conversion will happen automatically.

In the following calculation, the decimal 0.5 is being added to the whole number 120. In this

case, the whole number would be implicitly converted to a decimal before being added to

the other decimal, and further returning a decimal result data type.

0.5 + 123

Explicit conversion

For some data type conversions, a way of converting the data may be imagined, but it may

not be the kind of conversion that one wants to perform accidentally. In these cases,

conversion must be explicitly performed using the convert function.

In the following example, the decimal 5.1 is being passed to the second parameter of the left

function, which only accepts whole numbers. On its own, this will cause a calculation error

 to be shown because the data types do not match, and decimal does not implicitly convert

back to int. However, a conversion can be imagined - namely to round the decimal. The

convert function can be used to explicitly force this.

left("Welcome", 5.1) -- error
left("Welcome", convert(int, 5.1)) -- OK

Permitted conversions

The following table shows what type conversions are implicitly and explicitly allowed.

 Implicit conversion allowed from the type on the left to the type on the top

 Explicit conversion allowed from the type on the left to the type on the top

 string int decimal currency date time datetime record bool

string n/a

int n/a

decimal n/a

currency n/a

date n/a

time n/a

datetime n/a

record n/a

bool n/a

Specific conversions

Converting from record to string

A record will implicitly convert to a string. When this is done, then name of record is

returned.

For example, the following calculation will retrieve the name field of each record, and prefix

it with the text provided.

'Hello ' + all(Person)

Converting between record objects

If a result data type is record, then the record object is also tracked.

Record calculations can be implicitly converted from an object to a parent object. For

example, an expression that returns a list of Employees can then be used to access fields that

are defined on Person, because Employee derives from Person.

Record expressions can be explicitly converted from a object to a derived object. Explicit

conversion is done by specifying the object script name. For example, the following

calculation will get all Employees, but then treat the result as manager:

convert([Manager], all([Employee]))

That is, this expression can now access fields and relationships that are now only available

on managers. If employees are encountered that are not managers, then the conversion will

turn them into null.

Converting from datetime to string

If a calculation that has a datetime result data type is converted to a string, then the

date/time value is firstly transformed into the time zone of the user who is currently viewing

the calculation result (or running the workflow), and the date/time is then formatted using

Australian date format.

Time zone adjustments are not, however, made for date-only or time-only data types.

Implicit conversion and comparisons

If two different data types are compared (for example to check whether one is larger than

the other) then implicit conversion can contribute to accidental calculation errors. For

example, if a number were to be accidentally compared to a string then this could cause

unintended behavior. So help prevent this type of error, the calculation builder will give

warnings and/or errors for suspicious conversions - including some scenarios where implicit

conversion would ordinarily otherwise apply.

